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Abstract
The standard one-particle Green function (GF) is extended to account for
scattering from open-shell many-body targets. This extended GF possesses
a self-energy which is an exact optical potential (OP) for scattering from
open-shell targets. Furthermore, to each scattering process with well-defined
quantum numbers there is a specific OP, thus reducing the multichannel problem
to single-channel ones. As an explicit example we work out, in detail, the
scattering of spin- 1

2 projectiles from open-shell targets.

PACS numbers: 03.65.Nk, 24.10.−i, 34.10.+x

Elastic scattering is a basic experimental tool used for studying the internal structure of
composite many-body targets. In comparison with closed-shell targets, scattering from open-
shell targets is more intricate since for any energy of the projectile the scattering process is, in
general, a multichannel one. In particular, spin-flips and zero-energy excitations are examples
of open channels due to the exchange interaction, even if spin–orbit and spin–spin couplings
are negligible. There are ample experimental examples of scattering from open-shell targets,
including cases where either the projectiles and/or the targets are polarized, thus enabling one
to detect the above-mentioned quantum effects. We mention here the scattering of protons and
neutrons from nuclei (3He [1], 12C, 28Si and others [2]) and the scattering of electrons from
atoms (Cs, Mn and others [3, 4]), ions (Ar+ [5]) and molecules (O2 and NO [4]).

For open-shell atoms and molecules it is possible to successfully compute scattering
matrix (S-matrix) elements (see, e.g., [6]). For nuclei, where the underlying potentials are not
accurately known, and for larger molecules, where the computational effort is substantial, it is a
very attractive concept to describe the scattering from the many-body target by an effective one-
particle potential (optical potential (OP)). The construction of OPs for elastic scattering from
many-body targets and their application has been a vivid field of research in nuclear, atomic
and molecular physics (see, e.g., [7, 8] and references therein). Both Feshbach’s OPs [9]
(constructed by projection operators applied to the coupled-channel equations) and that of
Bell and Squires [10] (the self-energy of the one-particle Green function (GF)) are exact OPs
for elastic scattering from the closed-shell many-body system under investigation. However,
for open-shell targets the standard one-particle GF [11] does not apply and, independently,
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Feshbach’s OPs are not well-behaved potentials [7]. It is instructive to mention that, by
neglecting the antisymmetrization between the projectile and the target and by adopting the
impulse approximation, Kerman et al [12] have developed a successful OP for high-energy
nucleon–nucleus scattering. To the best of our knowledge, a general OP for elastic scattering
from open-shell targets, valid for all projectile’s energies, does not appear in the literature.
It is the purpose of this letter to construct exact OPs for elastic scattering from open-shell
many-body targets. It should be emphasized that, although we speak of energetically-elastic
scattering, the scattering dynamics is that of a multichannel problem, since the target can
occupy different states before and after the collision.

Having in mind the construction of a theory that generalizes the text-book GF [11], we
mention that for degenerate targets the statistical average of one-particle GFs (defined with
respect to each member of the degenerate manifold) has been introduced as an analogue
of the usual one-particle GF [13]. Indeed, the statistical GF admits the correct density,
particle-number and energy of the degenerate ground state. Moreover, correct energy splittings
and relative spectral intensities in ionization of open-shell targets can be extracted from the
statistical GF [14]. Unfortunately, its self-energy is not an OP for elastic scattering from
degenerate targets, owing to its definition as an averaged quantity.

Aiming at constructing OPs for such scattering processes, we therefore resort to another
line of reasoning that has been suggested recently by one of the authors [15]. In [15] it
has been shown that OPs for inelastic scattering from many-body targets can be formally
constructed. The evaluation of these OPs is still an open question, owing to the complexity
characterizing the scattering of projectiles indistinguishable from the particles comprising
the many-body targets [15]. Below we show that if one restricts the discussion of inelastic
scattering to scattering from a degenerate ground state, it is then possible to define a generalized
GF (hereafter referred to as the open-shell Green function (OSGF)) which is to scattering from
open-shell targets what the standard GF is to scattering from closed-shell targets.

Before defining the OSGF, it is instructive to examine the structure of the standard one-
particle GF [11]:

gpq(t, t
′) = g+

pq(t, t
′) + g−

pq(t, t
′)

= − iθ(t − t ′)〈0|ap(t)a†
q(t

′)|0〉 + iθ(t ′ − t)〈0|a†
q(t

′)ap(t)|0〉. (1)

Here |0〉 stands for the target’s non-degenerate ground state and ap(t) and a†
p(t) denote

the annihilation and creation operators for projectiles in projectile one-particle states ϕp.
Throughout this letter we treat fermions exclusively. Adaptation of the formalism and
formulae to bosons is straightforward. The advanced-particle GF, g+

pq(t, t
′), represents the

scattering process a†
q |0〉 → a†

p|0〉. The retarded-hole partner, g−
pq(t, t

′), is responsible for the
complementary process of ionization (electron detachment). gpq(t, t

′) is subject to the well
known Dyson equation, which after Fourier transformation from time-to-energy space, reads
in matrix notation [11]

g(ω) = g(0)(ω) + g(0)(ω)σ(ω)g(ω). (2)

g0(ω)denotes the free GF computed without particle–particle interaction. As mentioned above,
the self-energy σ(ω) = σ(∞) + m(ω) is an exact OP for elastic scattering from the system
under investigation [10]. σ(∞) and m(ω) are referred to as the static (energy-independent)
and dynamical (energy-dependent) parts of the self-energy.

In scattering from degenerate targets, different channels of the type a†
q |N〉 → a†

p|M〉 are
a priori possible. |M〉 and |N〉 denote two orthogonal states of the ground state manifold.
Comparing this to scattering from closed-shell targets suggests the following (intuitive) super-
matrix structure for the OSGF:
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G[M,N ]
pq (t, t ′) = G+[M,N ]

pq (t, t ′) + G−[M,N ]
pq (t, t ′)

= − iθ(t − t ′)〈M|ap(t)a†
q(t

′)|N〉 + iθ(t ′ − t)〈M|a†
q(t

′)ap(t)|N〉. (3)

M and N are target indices and range over the entire ground state manifold. It is clear that
the advanced-particle part, G+[M,N ]

pq (t, t ′), represents the scattering process a†
q |N〉 → a†

p|M〉,
while the retarded-hole part, G−[M,N ]

pq (t, t ′), accounts for ionization. For closed-shell targets,
that is for N = M = 0, the OSGF of equation (3) boils down to the standard GF in equation (1).
We studied the equation-of-motion of G[M,N ]

pq (t, t ′) using Zubarev’s method [16]. The result
enables us to connect the OSGF to a self-energy Σ(ω) through a generalized Dyson equation

G(ω) = G(0)(ω) + G(0)(ω)Σ(ω)G(ω). (4)

Here G(0)(ω) is computed without particle–particle interaction and is equal to the direct
product 1 ⊗ g(0)(ω). The dimension of the unit matrix, 1, is that of the degenerate
manifold. The self-energy Σ(ω) takes on the same appealing structure as that of the elastic
one: �[M,N ]

pq (ω) = �[M,N ]
pq (∞) + M [M,N ]

pq (ω). The static term is given by �[M,N ]
pq (∞) =

WpqδMN +
∑

n,l(Vpnql − Vpnlq)〈M|a†
nal|N〉. Here W and V are the one- and two-body parts

of the original interaction potential, respectively. The second and third terms are, respectively,
the electrostatic and exchange interactions of the projectile with the exact one-particle densities
of the target. Of course, if the projectile is distinguishable from the particles comprising the
target, the exchange term vanishes identically. The dynamical term, M [M,N ]

pq (ω), couples all
states in the degenerate manifold via a generalized response function. Its properties will be
discussed elsewhere.

To show that Σ(ω) is an OP for the various scattering processes a†
q |N〉 → a†

p|M〉 we recall
that the corresponding multichannel S-matrix is given by S[M,N ]

pq = −〈pM|qN〉+ [17]. The
incoming and outgoing scattering states |pM〉± can be expressed using creation operators as
|pM〉± = limt→∓∞ exp[−iεpt]a†

p(t)|M〉, where εp = p2

2m
is the energy of the projectile [18].

It is now possible to relate S[M,N ]
pq to G[M,N ]

pq (t, t ′), namely,

S[M,N ]
pq = i lim

t→+∞
t ′→−∞

e+iεptG+[M,N ]
pq (t, t ′)e−iεq t ′ = i lim

t→+∞
t ′→−∞

e+iεptG[M,N ]
pq (t, t ′)e−iεq t ′ . (5)

The last step in equation (5) is valid since the retarded-hole part, G−[M,N ]
pq (t, t ′), vanishes

identically for t > t ′.
To proceed we break up the generalized Dyson equation (4) into two equations:

G(ω) = G(0)(ω) + G(0)(ω)T (ω)G(0)(ω),

T (ω) = Σ(ω) + Σ(ω)G(0)(ω)T (ω).
(6)

Comparing equation (6) to its elastic counterpart, we find that T (ω) plays the role of an
improper self-energy. With the help of equation (6) one finds the final expression for the
S-matrix:

S[M,N ]
pq (εp) = δpqδMN − 2π iT [M,N ]

pq (εp)δ(εp − εq). (7)

Equation (7) reminds one of the text-book equation connecting the S-matrix to the
T -matrix [17]. We have thus proven that the matrix T (ω) defined in equation (6) is nothing
but the (energetically-elastic) multichannel T -matrix. Following standard scattering theory
we see from the relation (6) that Σ(ω) is a potential governing the scattering process. Of
course, both polarized (i.e. state-specific) and unpolarized energy-dependent cross sections
can be calculated from the elements of T (ω).

It is important to note that the above construction of Σ(ω) does not restrict the nature
of the degenerate states. In particular, these states do not need to correlate to single Slater
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determinants in the absence of particle–particle interaction. Like the text-book OP, Σ(ω)

is a one-particle potential, which is Hermitian and non-singular at projectile energies below
the first inelastic threshold. Finally, we note that our formulation applies to spatial and spin
degeneracy (or any other type of degeneracy).

So far, we have used only the degeneracy property of the ground state manifold in order
to construct the OP Σ(ω). Consequently, Σ(ω) describes multichannel scattering processes
within the degenerate manifold. Having in mind that the many-body Hamiltonian is invariant
under a specific symmetry group, and, hence, the states in the degenerate manifold are
interrelated by symmetry operations, we can further reduce the above-obtained OP. In what
follows we treat explicitly the case of spin degeneracy and a spin- 1

2 projectile. We would like
to stress that the symmetry analysis performed does not depend on the symmetry group of the
many-body Hamiltonian.

Let the spin of the target in its ground state be S. The ground state manifold is denoted by
{|M〉, M = S, . . . ,−S}. In the single-particle annihilation and creation operators we separate
the spatial and spin degrees of freedom: apσ (t) and a†

pσ (t), where σ can assume two values—
α (up) and β (down). By utilizing the Wigner–Eckart theorem we express the OSGF through
the [S, S] diagonal blocks Gσ

pq ≡ G[S,S]
pσ,qσ , which depend on the spatial one-particle indices.

The reason for choosing the highest-multiplicity block, M = S, will be clarified below. The
result takes on the following simple appearance:

G(ω) = A ⊗ [Gα(ω) − Gβ(ω)] + 1 ⊗ Gβ(ω). (8a)

Note that for S = 0 one has Gα(ω) = Gβ(ω) and the familiar decomposition of the standard GF
in case of spin-independent potentials is recovered [11]. The indices of the coefficient matrix
A depend on the projectile and target spin variables only, hence its dimension is 2(2S + 1).
The elements of A, composed of products of 3j -symbol terms C

j1,j2,j3
m1,m2,m3 , are given by

A
M,M ′
σ,σ ′ = (−1)−σ ′+S−M+ 1

2

1∑
ρ=0

(2ρ + 1)C
1
2 , 1

2 ,ρ

−σ,σ ′,σ−σ ′(C
S,S,ρ

S,−S,0)
−1C

S,S,ρ

M ′,−M,σ ′−σC
1
2 , 1

2 ,ρ

− 1
2 , 1

2 ,0
. (8b)

From equation (8b) one can verify that A is a symmetric and real matrix (due to the spin-
independent particle–particle interaction). The simple structure of A allows one to diagonalize
it and, hence, block diagonalize G(ω) in equation (8). Only two distinct blocks

GS+1/2(ω) = Gα(ω), GS−1/2(ω) = 2S + 1

2S
Gβ(ω) − 1

2S
Gα(ω), (9)

with the corresponding multiplicities of 2(S + 1) and 2S, appear. This outcome suggests a
transparent physical meaning: the GFs GS±1/2(ω) describe scattering in many-particle states
of total spin S ± 1/2, where the corresponding multiplicities are just the usual magnetic
multiplicities given by 2(S + 1) and 2S, respectively. In proving this claim we have to examine
the structure of the advanced-particle and retarded-hole parts of G(t, t ′). The advanced-particle
part, G+(t, t ′), can be expressed, suppressing a factor of −i, as a multiplication of column and
row vectors:

[a†
pσ (t)|S〉 . . . a†

pσ (t)| − S〉]† × [a†
qσ ′(t

′)|S〉 . . . a
†
qσ ′(t

′)| − S〉].
The components of these vectors are (N + 1)-particle states describing the addition of two
spins: the spin- 1

2 projectile and spin-S composite target. Therefore, block diagonalization
of G+(t, t ′) simply means going from a basis of two independent spins to the basis where
their total spin is a good quantum number (we use the term spin-irreducible). In other words,
autocorrelations of the spin-irreducible (N + 1)-particle states

|S ± 1/2, m〉q ≡
√

S + 1/2 ± m

2S + 1
a†

qα|m − 1/2〉 ±
√

S + 1/2 ∓ m

2S + 1
a

†
qβ |m + 1/2〉 (10)
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(−S ∓ 1/2 � m � S ± 1/2) give the block-diagonalized G+(t, t ′). Interestingly, the
same transformation which block diagonalizes G+(t, t ′) also block diagonalizes G−(t, t ′)
and, hence, G(t, t ′). The reason is that the application of the Wigner–Eckart theorem (see
equation (8)) yields the same result for any time-ordering of the annihilation and creation
operators. This proves our claim that the block-diagonalized OSGF (see equation (9))
represents spin-irreducible, (N + 1)-particle, scattering states.

Having determined that the GFs GS±1/2(ω) in equation (9) correspond to spin-irreducible
scattering states we would like to inquire whether there are OPs for these scattering channels
alone. The answer is positive. Owing to the structure of the generalized Dyson equation (4), one
can block diagonalize Σ(ω) to give the spin-irreducible self-energies Σ S±1/2(ω), by utilizing
the same transformation employed to block diagonalize G(ω). Similarly, the same holds for the
S-matrix and T (ω) (see equations (5)–(7)) which block diagonalize into their spin-irreducible
components SS±1/2 and T S±1/2(ω). Consequently, to each of the spin-irreducible scattering
channels represented by GS±1/2(ω) there is an exact spin-irreducible OP: Σ S±1/2(ω). We note
that the spin-irreducible OPs are independent of the azimuthal quantum number (within each
total spin manifold) as it should be for spin-independent interactions. Moreover, since the spin-
irreducible scattering channels do not couple due to symmetry restrictions, the corresponding
spin-irreducible OPs are all Hermitian below the inelastic thresholds. The latter correspond to
the first (N + 1)-particle, spin-irreducible, excited states. This result gives the spin-irreducible
OPs of the OSGF the same role played by σ(ω) for g(ω).

All elastic scattering differential cross sections can be computed by utilizing the OPs
found above. On the one hand, in scattering of unpolarized projectiles from unpolarized
targets the (average) cross section depends on the weighted sum of the spin-irreducible
transition probabilities. Spin-flip cross sections, on the other hand, can be expressed from
the difference between spin-irreducible transition amplitudes [17]. The spin-irreducible
transition amplitudes, T S±1/2(ω), can be calculated from the spin-irreducible OPs, Σ S±1/2(ω),
through the usual relations in equation (6) expressed for the single-channel quantities. This
allows us to calculate spin-flip and average cross sections from the spin-irreducible OPs,
Σ S±1/2(ω).

So far, we have discussed the existence and properties of the spin-irreducible OPs for
scattering from open-shell targets. For some relevant cases they can be systematically evaluated
by the usual diagrammatic analysis, as utilized for the text-book proper self-energy σ(ω) [11].
Generally, in the absence of particle–particle interaction a member |M〉 of the degenerate
manifold correlates to a linear combination of Slater determinants. Consequently, the
diagrammatic approach for calculating the corresponding self-energy via Wick’s theorem [11]
breaks down. Fortunately, for most atomic and molecular systems there are genuine one-
particle configurations within the unperturbed degenerate manifold. Due to Hund’s rule, for
example, the states with maximal/minimal magnetic quantum number, |M = ±S〉, correspond
to a single Slater determinant whenever spin–orbit and spin–spin couplings are neglected. For
these cases, we can write a single-channel Dyson equation to each of the blocks Gσ (ω), namely
Gα,β(ω) = G(0)(ω) + G(0)(ω)Σα,β(ω)Gα,β(ω), where G(0)(ω) is computed without particle–
particle interaction. This allows us to express the spin-irreducible OPs, Σ S±1/2(ω), directly
by the self-energies Σα,β(ω). The result reads,

Σ S+1/2(ω) = Σα, Σ S−1/2(ω) = G(0)−1 − 2S

(
2S + 1

G(0)−1 − Σβ
− 1

G(0)−1 − Σα

)−1

. (11)

The self-energies Σα,β(ω) can be systematically evaluated by the usual diagrammatic
analysis [14] and, subsequently, the spin-irreducible OPs Σ S±1/2(ω) can be calculated via
equation (11).
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One may argue why one should not use the self-energies Σα,β(ω) instead of the spin-
irreducible OPs Σ S±1/2(ω) to calculate cross sections. Indeed, Σα(ω) is a Hermitian and
well-behaved function. Unfortunately, the self-energy Σβ(ω) is a non-Hermitian potential and
on top of that exhibits a cut starting already at zero energy. This can readily be understood
by noticing that Σβ(ω) accounts for the spin-flip process a

†
qβ |S〉 → a†

pα|S − 1〉, which is
an open channel for any projectile energy. Consequently, the usage of Σβ(ω) as an OP by
itself is hardly practical. Fortunately, the symmetry arguments described above dictate that
the spin-irreducible OPs are Hermitian and well-behaved functions and therefore are practical
tools for scattering calculations. For the spin-irreducible OP Σ S−1/2(ω) this is achieved by the
coupling of both Σα,β(ω) (see equation (11)) which shifts the singular properties of Σβ(ω)

to the inelastic threshold. This puts the scattering of electrons from open-shell atoms and
molecules on a firm theoretical foundation, similarly to that possessed by scattering from
closed-shell targets.

In conclusion, the OSGF has been introduced in order to tackle the problem of scattering
from open-shell targets. The self-energy of the OSGF has been shown to be an exact OP for
scattering from the degenerate ground state. By doing so, we reduced the many-body problem
of scattering from open-shell targets to the scattering of a projectile by an exact one-body
potential. Moreover, it has been shown that exact OPs can be constructed for specific elastic
processes within the degenerate manifold, for example, for spin-flip processes. Taking into
account the symmetry of the many-body Hamiltonian, spin-irreducible (in general, symmetry-
irreducible) OPs have been shown to be the analogues of the usual self-energy. In particular,
they exhibit similar analytic properties and, for most atomic and molecular systems, can be
evaluated through Feynman’s diagrams. Our results open the door to treating the very intricate
scattering processes from open-shell targets with tools as attractive and common as used for
closed-shell targets.

The authors wish to thank Jochen Schirmer for fruitful and stimulating discussions. OEA is
grateful to the Minerva Foundation for financial support.
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